Both the government and the private sector are waging an intense battle against COVID-19.

Vaccines are being rolled out but serious challenges remain, including Public Safety Power Shutoffs in California and winter storms that could trigger power outages that will pose threats to emergency power at the very hospitals battling COVID-19.

Introducing the Power Resilience Blueprint for America, a bold plan to safeguard emergency power so our fight against COVID-19 can still run at full speed, even when the power goes out.

Power Resilience Blueprint For America

Table Of Contents

Power Resilience Blueprint for America Overview
Necessary Government Actions to Advance Blueprint
Timeline for Blueprint Implementation
Blueprint Action Step # 1: Deployment of P.I.O.N.E.E.R. Tool
Blueprint Action Step # 2: Protecting the Medical Supply Chain
Blueprint Action Step # 3: Expanded Deployment of P.I.O.N.E.E.R. Tool
Prioritization Considerations for Deployment of P.I.O.N.E.E.R. Tool
Blueprint Action Step # 4: Expand FEMA's Temporary Emergency Power Task Force
Blueprint Action Step # 5: Create Energy Assurance and Emergency Power Resilience Toolkit I I
Blueprint Action Step # 6: Enhancing Critical Infrastructure Protection
Blueprint Action Step # 7: Creating a Framework to Help Governors Make Life or Death Rationing Decisions When Emergency Power Resources are Scarce
Blueprint Action Step # 8: Developing a Long-Range Plan to Boost America's Power Resilience

Appendix

Details on Implementing FEMA's Temporary Emergency Power Task Force Action Plan	AI
Details on Recommended Actions to Boost a Jurisdiction's Emergency Power Preparedness for inclusion in Proposed Toolkit	A2
Key Architects of the Power Resilience Blueprint	A6

Power Resilience Blueprint for America Overview

In some parts of the country, the battle against COVID-19 will be significantly hampered by a loss of electricity, especially in California where Public Safety Power Shutoffs have resumed, and in locations prone to serious winter weather. As power outages occur, hospitals, nursing homes and other critical infrastructure will be forced to rely on emergency power, a life-sustaining resource that has experienced failures in virtually every disaster, leading to emergency evacuations, and in the case of Hurricane Katrina, patient fatalities.

Power outages have proven deadly even when emergency power failures were not a factor. Twelve elderly residents of the Hollywood Hills Rehabilitation Center in Hollywood, Florida died in 2017 after Hurricane Irma knocked power out to the facility. The nursing home's HVAC system, which was not required to be connected to an emergency power source at the time, was rendered inoperable and rising temperatures inside the facility turned deadly.

The Power Resilience Blueprint for America is a bold plan that offers

immediate solutions to help America prepare for the complex scenario of an ongoing fight against COVID-19 at a time when Public Safety Power Shutoffs in California and winter weather around the country will significantly increase the likelihood of power outages.

The Power Resilience Blueprint provides tools to prevent or mitigate expected failures of emergency power with proposed technology deployments that will provide real time alerts to government officials and utilities when critical healthcare facilities face a threat to emergency power or dangerously high temperatures due to a loss of air conditioning.

The Power Resilience Blueprint also addresses the pandemic's painful lesson of resource scarcity by offering solutions to address the likely shortage of emergency power assets in a future catastrophic power outage while bringing major new efficiencies to the deployment of temporary emergency power resources.

The Power Resilience Blueprint's eight action steps embody best practices currently being developed and implemented by two 501c3 non-profits that are national leaders in energy resilience: Powered for Patients and the Electric Infrastructure Security Council. These action steps are highlighted in this Overview Document with additional detail provided in the appendix.

For additional information about the Power Resilience Blueprint for America, please contact:

Eric Cote, Powered for Patients cote@poweredforpatients.org 401-374-8500 John Heltzel, Electric Infrastructure Security Council John.heltzel@eiscouncil.org 502-320-8871

Necessary Government Action to Implement Blueprint

- Guidance from DHS, FEMA, HHS and DOE on permissible use of existing grant funds held by states and territories for implementation of Power Resilience Blueprint activities
- Allocation of available and/or future funding by DHS, FEMA, HHS, and DOE
- As needed, appropriation of new funding by Congress directed to DHS, FEMA, HHS and DOE for implementation of the Power Resilience Blueprint
- Active engagement of appropriate federal, state, local, tribal and territorial officials to engage in and support enhanced energy assurance and emergency power preparedness planning initiatives detailed in the Power Resilience Blueprint

Timeline for Implementation

July 2020

- Share Power Resilience Blueprint for America with DHS, FEMA, HHS and DOE and initiate outreach to Congress
- Share Blueprint with elected state leaders and state and local emergency managers, public health officials, energy assurance officials and their respective trade associations

July to August 2020 and Beyond

• As funding becomes available, implement project plan

Detailed Overview of Power Resilience Blueprint for America Action Steps

Blueprint Action Step # 1: Deployment of P.I.O.N.E.E.R. Tool

Action Step # 1: Targeted deployment of the P.I.O.N.E.E.R. tool to single-generator hospitals and skilled nursing facilities, especially those treating COVID-19 patients, to provide government officials and utilities with real time alerts when emergency power is threatened or when temperatures in patient care areas reach dangerous levels during power outages.

The P.I.O.N.E.E.R. tool is a web-based dashboard that provides government agencies and utilities with automated and real time emergency power threat reports from critical healthcare facilities

whose emergency power systems are monitored by Fault Detection and Diagnostic (FDD) technology.

The P.I.O.N.E.E.R. Tool uses this same technology to provide real time alerts when HVAC systems fail to operate properly and result in dangerously high temperatures in patient care areas.

The loss of emergency power in a hospital or skilled nursing facility with a single generator treating COVID-19 patients or other patients depending on ventilators and other electric-powered medical devices could represent a life-threatening emergency.

This very scenario occurred in Pawtucket, RI on August 4, 2020 when Hurricane Isaias knocked power out to the Jeanne Jugan Residence, a skilled nursing facility with 42 patients, eight of whom relied on electric-powered oxygen tanks. The facility's only generator, a 42-year-old, 300 kW unit, suffered a catastrophic mechanical failure approximately three and a half hours after utility power was lost.

Firefighters launched an emergency evacuation of the oxygen-dependent patients to nearby facilities while an urgent search for a temporary backup generator got underway. Fortunately, no patients were injured during the incident.

Several days after Hurricane Laura struck Louisiana, Abbeville General Hospital, located approximately 150 miles west of New Orleans, was operating on generator power to help take pressure off the city's electrical system, which was having difficulty providing enough electricity for all of its customers in the aftermath of Hurricane Laura.

The hospital's only generator suffered a serious mechanical failure that shut the generator down, forcing the facility to resume use of utility-supplied electricity. Without any working emergency power,

the hospital evacuated five patients until a replacement generator could be secured.

Deploying the P.I.O.N.E.E.R. tool to these single generator hospitals and nursing homes would give those facilities, designated government officials, and utility personnel automated and real time alerts anytime emergency power faces a serious threat – allowing early intervention to prevent the failure or more

quickly deploy a substitute generator. When loss of emergency power occurs during dangerously hot summer months, the P.I.O.N.E.E.R. tool will monitor temperatures in patient care areas as they approach or reach dangerous levels and provide real time alerts to this growing threat.

Early warning of a threat to emergency power and dangerously rising temperatures would allow government agencies to quickly engage with impacted facilities and their service providers to help address any impediments to rapid response by service personnel. This early warning will also enable accelerated planning for any potential evacuation or expedited deployment of backup generators should either step be necessary. Armed with P.I.O.N.E.E.R.'s real time threat reports, electric utilities can assess options for potential power restoration before the loss of emergency power or before temperatures reach dangerous levels.

It is projected that 16¹ percent of U.S. hospitals outside rural settings rely on a single generator for their emergency power system and approximately 9 percent of skilled nursing facilities are licensed to provide ventilator care, most of which also rely on a single generator for their emergency power system. Based on these projections, it is estimated that there are approximately 980 single-generator non-rural hospitals and 1395 single-generator skilled nursing facilities that treat patients who depend on life sustaining electric-powered medical devices across the U.S. In addition to non-rural hospitals, there are approximately 1350 Critical Access Hospitals (CAHs) in the U.S. and its territories, located mostly in rural areas. It is estimated that at least 85 percent of these facilities operate with a single generator. Given the remoteness of these CAHs, emergency power failures could be more difficult to quickly resolve during the battle against COVID-19, making these facilities priorities for P.I.O.N.E.E.R. deployment.

Deploying the P.I.O.N.E.E.R. Tool to the nation's hospitals and skilled nursing facilities will provide a powerful new resource, especially for facilities that rely on a single generator and are licensed to provide ventilator care.

The first deployments will take place in Los Angeles County where the Los Angeles County Emergency Medical Services Agency will fund deployment of the P.I.O.N.E.E.R. tool to all of the county's single-generator hospitals and a number of sub-acute Skilled Nursing Facilities licensed to provide ventilator care. These deployments are aimed at enhancing patient safety at a time when Public Safety Power Shutoffs in California are expected to resume in order to minimize the risk of wildfires sparked by utility transmission lines.

The Power Resilience Blueprint's Budget Overview, located in the appendix, details funding requirements associated with different levels of P.I.O.N.E.E.R. deployment.

¹This estimate is based on the actual number of hospitals in Los Angeles County participating in the HHS Hospital Preparedness Program that operate with a single-generator emergency power system. The estimate that 9% of skilled nursing facilities are licensed to provide ventilator care is based on the actual number of such facilities in California, which has 1200 skilled nursing facilities, 100 of which are designated as sub-acute skilled nursing facilities, the designation used in California to indicate a facility's capacity to provide ventilator care.

Blueprint Action Step # 2: Protecting the Medical Supply Chain

Rapid assessment of emergency power gaps at the nation's medical supply chain facilities deemed most critical by HHS/ ASPR, development of recommendations to close gaps and deployment of the P.I.O.N.E.E.R. tool to any of these facilities with single-generator emergency power systems.

The job of getting vital medical supplies to the hospitals treating COVID-19 patients requires a resilient supply chain. Warehouses distributing PPE and ventilators must maintain electrical power when the grid fails and many medicines require consistent

refrigeration. These realities underscore the importance of reliable emergency power for the nation's most important medical distribution facilities.

The proposed rapid assessment of emergency power gaps at the medical supply facilities deemed most critical by HHS/ASPR will enable development of a plan to close gaps. In addition, this assessment will identify the vitally important facilities that rely on a single generator for their emergency power system, making them ideal candidates for deployment of the P.I.O.N.E.E.R. tool.

Blueprint Action Step # 3: Expanded Deployment of P.I.O.N.E.E.R. Tool

Deploying the P.I.O.N.E.E.R. tool to critical infrastructure beyond the healthcare sector that relies on a single generator.

While the Power Resilience Blueprint addresses COVID-related concerns about emergency power vulnerability in critical healthcare facilities, the Blueprint is focused on emergency power preparedness across all critical infrastructure sectors. As such, it is recommended that the P.I.O.N.E.E.R. tool be deployed to monitor single generator emergency power systems in facilities such as

water and wastewater treatment plants, 911 call centers and vital public safety facilities. After all, a hospital without potable water or functioning wastewater treatment is as compromised as one without power. Further, water and wastewater failures many necessitate unplanned evacuations of areas by citizens, not just those in healthcare facilities.

The identification of these facilities should be done through coordinated effort with state, county and local emergency managers and public health officials. These deployments could be limited in number and considered as pilot initiatives in targeted states, augmenting the deployments at single generator hospitals and skilled nursing facilities in each pilot state. Such deployments would help pilot states enhance their understanding of the unique emergency power needs of each critical infrastructure sector and better

Prioritization Considerations for Deployment of P.I.O.N.E.E.R. Tool

Action Steps 1, 2 and 3 each call for deployment of the P.I.O.N.E.E.R. tool for different types of critical facilities. Recognizing that resources are limited, prioritization considerations for deployment of the P.I.O.N.E.E.R. tool could include:

- All 1150 Critical Access Hospitals (CAH) relying on a single generator²
- A percentage of the most critical healthcare/medical distribution facilities as identified by HHS/ ASPR that rely on single generator emergency power systems
- A percentage of the single generator hospitals and SNFs across the country relying on a single generator (could consider targeting the 10 states with the highest COVID-19 death rates on a per capita basis, or the 10 most populous states.)
- Pilot State Deployments to non-healthcare critical infrastructure facilities with single generator emergency
 power systems (It is recommended that these deployments be made in states where single generator
 hospitals and skilled nursing facilities are slated for P.I.O.N.E.E.R. deployment and that a minimum of 25
 deployments across all types of critical infrastructure occur in each state. Priority should be given to water,
 wastewater, communications, fuel distribution, transportation, and emergency management.)

Blueprint Action Step # 4: Expand FEMA's Temporary Emergency Power Task Force

Expand the mission of FEMA's Temporary Emergency Power Task Force to serve as a coordination mechanism at the highest levels of federal government and industry to formalize public-private partnership to enhance supply chain coordination.

Experts agree that a shortage of emergency power resources in a catastrophic power outage in the U.S. is largely unavoidable. What can be avoided is the chaos of facing such a shortage ill-prepared.

A shortage of emergency power assets is not a far-fetched notion. FEMA and the U.S. Army Corps of Engineers (USACE) discovered this reality when responding to Hurricane Maria in 2017. These two federal agencies jointly manage the nation's largest fleet of temporary generators. In addition to nearly 1,000 generators owned by FEMA, the fleet is augmented by hundreds of generators rented by the Defense Logistics Agency (DLA).

At the peak of the Hurricane Maria response, the sheer number of requests for generators in Puerto Rico pushed the federal fleet, including its private-rental assets, beyond its limits. Desperate requests for emergency power support from health clinics, gas stations, grocery stores and other essential facilities could not be fulfilled.

In a widespread and prolonged power outage, would hospitals with neonatal ICUs be prioritized over a nursing facility serving elderly patients? Would officials deploy a generator and fuel to a water treatment plant that supplies drinking water to tens of thousands or a 911 call center serving that same population?

Such painful decisions will fall largely on governors who will turn to their emergency management and public health leaders for guidance in what will likely be life or death decisions. (Action Step # 7 will provide a tool to help support this decision making.)

FEMA launched its Temporary Emergency Power Task Force following Hurricane Maria to help the agency better prepare for future shortages of temporary emergency power assets. Key tasks relative to expanding the mission of the Task Force include:

- Liaise with FEMA to debrief on FEMA's Temporary Emergency Power Task Force and determine key unmet needs from existing Task Force. Expand the Task Force mission to address unmet needs, including enhancing readiness for emergency power resource scarcity to include fuel scarcity.
- Recruitment of key private sector leaders involved in the manufacturing, distribution and rental of emergency power equipment to engage these industry leaders in the work of the Temporary Emergency Power Task Force. As part of this process, seek input on how to best align the Emergency Power Task Force's work with industry's disaster planning and response systems.

 Liaise with existing FEMA contractors working with emergency power service providers across the nation to integrate service providers into the work of the Task Force.

- Engage leaders that have worked on fuel scarcity planning from DOE, DLA and other agencies, along with private sector leaders, to facilitate stepped up public and private sector coordination around fuel scarcity
- Develop a Strategy Document and Action Plan for expansion of the Temporary Emergency Power Task Force to achieve desired level of public-private sector coordination before, during and after disasters. This Strategy Document and Action Plan will be driven by the goals of enabling effective public-private sector coordination to address emergency power and fuel shortages in a large-scale disaster and accelerating expanded manufacturing of emergency power system components.
- Seek input on Action Plan from public and private sector stakeholders
- Finalize Action Plan

Blueprint Action Step # 5: Create Energy Assurance and Emergency Power Resilience Toolkit

Develop a federal Energy Assurance and Emergency Power Resilience Toolkit and provide additional technical assistance to support energy assurance and emergency power preparedness planning by states and local communities.

The emergency power resilience work of Powered for Patients in Los Angeles County, the organization's recent work authoring an emergency power resilience toolkit for FEMA targeting the healthcare sector, and the energy assurance work of the EIS Council in Kentucky make the two organizations well qualified to develop the proposed Energy Assurance and Emergency Power Resilience Toolkit. This resource can be used by public and private sector leaders to enhance energy assurance preparedness across all sectors of critical infrastructure.

Healthcare Facilities and Power Outages

Guidance for State, Local, Tribal, Territorial, and Private Sector Partners August 2019

The proposed Toolkit will include key elements of the

energy assurance project being advanced by the Electric Infrastructure Security Council with the State of Kentucky. This project is built around a ten-point energy assurance planning approach developed by the U.S. Department of Energy and includes the following three distinct phases:

- **Phase I** High level review of a jurisdiction's energy sources and the logistics surrounding energy production, distribution, shipping, etc.
- **Phase II** Using FEMA's Threat and Hazard Identification and Risk Assessment (THIRA) process as a planning guide, the Toolkit helps a jurisdiction understand its natural hazard risks and estimate capacity requirements to mitigate these risks. The THIRA approach helps a jurisdiction assess how threats impact public and private sector entities and provides a planning approach to identify private sector solutions that can augment public efforts to mitigate hazards.
- **Phase III** Using EIS Council's Black Sky Exercise as a model, instructions for implementing a customized exercise would be provided. This will help the jurisdiction assess how its energy assurance work and its THIRA process prepare the jurisdiction to address challenges posed by the Black Sky scenario that produces a widespread and prolonged power outage. This process identifies preparedness gaps that remain and helps the jurisdiction determine where additional preparedness work is needed to become better equipped to address a power outage or other energy disruptions.

The proposed Toolkit's elements on Emergency Power Resilience Planning will draw heavily on the recently authored FEMA Toolkit and the Powered for Patients Los Angeles County Emergency Power Resilience Initiative. This section of the Toolkit will include instructional details on the following activities:

- Assessing protocols around how threats to emergency power at critical facilities are currently addressed and implementing new protocols to close gaps and enhance response capabilities, including adoption of an early warning and status update protocol to include use of the P.I.O.N.E.E.R. tool, a real time situational awareness tool that provides Power Information Needed to Expedite Emergency Response (P.I.O.N.E.E.R.).
- Identifying the most critical facilities that depend on emergency power to help support prioritized deployment of temporary power assets during a large scale

disaster (hospitals, sub-acute skilled nursing facilities (those with ventilator patients), water systems, waste water treatment plants, 911 call centers, fire stations, etc.)

- With critical facilities identified, conducting a survey of their emergency power systems to identify
 the technical details necessary to facilitate rapid deployment of replacement generators to include
 number of generators and important technical information about each generator will be important.
 During survey process, gather additional information about emergency power systems to inform a
 vulnerability assessment of at-risk systems, i.e., single generator systems, age of emergency power
 system components, recent history of mechanical problems, etc.
- Conducting an inventory of non-federal temporary power assets
- Reviewing current protocols used for requesting deployment of non-federal temporary power assets and assessing the logistics around actual deployment and installation of these assets
- Stepping up coordination with utilities around collective response in addressing a threat to emergency power at a critical facility during an outage

- Launching state-based Emergency Power Working Groups to facilitate a public private partnership between government and emergency power service, fuel and rental providers to enhance pre-disaster planning and joint disaster response capabilities (This activity will be supported by Action Step # 4 (Expanding Mission of FEMA's Temporary Emergency Power Task Force).
- Helping a jurisdiction identify possible uses of alternative sources of emergency power such as fuel cell technology, solar or wind powered battery storage and combined heat power (CHP) systems that rely on natural gas, and assisting the jurisdiction in eliminating any obstacles to expanded use of these alternatives.

To leverage the impact of the Toolkit, the Power Resilience Blueprint calls for the development of webinars and video tutorials to assist jurisdictions in using the Toolkit to bolster energy assurance and emergency power resilience planning.

In addition, the Power Resilience Blueprint recommends deployment of subject matter experts from Powered for Patients and the EIS

Council to assist states in launching Energy Assurance and Emergency Power Resilience Initiatives. If resources prevent a broader deployment of SMEs, suggested initial target states include California, Texas, Florida and New York, the nation's four most populous states. The inclusion of California as a target state would leverage the benefits of the ongoing emergency power resilience initiative launched by the Los Angeles County Emergency Medical Services (EMS) Agency with Powered for Patients in 2019. Phase I of this ongoing initiative is complete and provides an excellent foundation for much of the content envisioned for the Toolkit. As SMEs deploy to initial states to assist in implementation of the Toolkit, valuable lessons learned can be quickly chronicled and disseminated as addendums to the Toolkit for use in other states.

Blueprint Action Step # 6: Enhancing Critical Infrastructure Protection

Launch stepped up emergency power preparedness planning across critical infrastructure sectors through engagement with industry leaders and their trade associations.

In addition to state-focused initiatives, the Power Resilience Blueprint calls for critical infrastructure sector initiatives launched on a national basis to help boost emergency power resilience planning. The principal architects of the Power Resilience Blueprint, Powered for Patients and the Electric Infrastructure Security Council, would launch these partnerships with leading entities in key

sectors to drive enhanced emergency power resilience planning and adoption of best practices. The Board of Directors of Powered for Patients recently voted to create a sister non-profit, The Power Alliance, that will address emergency power preparedness planning in non-healthcare sectors of critical infrastructure. The Power Alliance would work closely with Powered for Patients and the EIS Council in implementing this deliverable.

Suggested sectors to engage in partnerships include:

- Healthcare Sector
- Water and Wastewater Industry
- Public Safety Facilities (Police and Fire Stations, 911 Call centers)
- Retail Trade Associations representing food, medicine/pharmaceuticals and fuel
- Data centers supporting critical functions such as cell phone service and internet communications

Proposed tools and activities to help support industry focused engagement:

- Industry Specific Toolkits to support enhanced emergency power resilience planning
- Webinars
- Presentations and panel discussions at key industry conferences

Blueprint Action Step # 7: Creating a Framework to Help Governors Make Life or Death Rationing Decisions When Emergency Power Resource are Scarce

Creation of emergency power rationing guidelines to help governors and local officials make difficult decisions about allocation of limited emergency power assets across all critical infrastructure sectors.

The COVID-19 pandemic focused a great deal of attention on potential ventilator shortages in the U.S. and how hospitals and physicians would address such shortages. Public health leaders and hospital ethicists quickly helped update Standard of Care documents to address rationing of ventilators³.

No such framework is believed to exist for

how governors or federal officials would make the difficult decisions about emergency power rationing across all sectors of critical infrastructure. The creation of Emergency Power Rationing Guidelines would help close this gap. The guidelines would address both rationing of fuel and emergency power equipment since an emergency power system cannot operate without fuel.

Key elements of this initiative include:

- Identifying appropriate stakeholders to seek their input to help inform guidelines such as technical experts, ethicists, and critical infrastructure sector representatives
- Developing an initial framework for rationing guidelines to include:
 - o Identification of types of critical infrastructure to receive rationed assets
 - Guidance to help governors and local officials understand the decisions they will be forced to make about rationing emergency power resources and how these decisions will impact the lives of citizens
 - Establishing trigger points to help state officials understand when rationing will become necessary and the degree of rationing that may be needed

³ For example, Doctor Daniel Wikler, the Mary B. Saltonstall Professor of Ethics and Population Health at the Harvard T.H. Chan School of Public Health, published an <u>op-ed</u> in the Washington Post on April 1, 2020 that detailed the work he and other medical professionals have undertaken in recent decades to develop frameworks to help guide the rationing of life-sustaining medical resources.

Blueprint Action Step # 8: Developing a Long-Range Plan to Boost America's Power Resilience

Develop a long-range plan to boost America's energy resilience and emergency power preparedness that includes creation of enhanced standards to guide states in achieving significantly higher levels of emergency power preparedness.

Many of the Blueprint's action items will be implemented in the near term and extend over a relatively brief 12 to 18-month period. Yet, the work of boosting America's emergency power preparedness cannot focus just on the threat of COVID-19. Other disasters, including those of potentially greater magnitude, will threaten in the years to come, requiring a sustained effort over many years and decades to ensure enhanced readiness.

The proposed long-range plan will establish ambitious but achievable goals that states can use to guide their work in boosting emergency power preparedness. Important elements of this long-range plan include consideration of alternative energy solutions that can augment or replace traditional forms of emergency power. In addition, the longrange plan will explore innovative solutions that address the unique challenges facing at-risk citizens relying on electric-powered medical devices in their homes during power outages. Implementation of the following actions, in varying degrees, can become the basis for a state achieving different levels of "enhanced" emergency power preparedness.

Few states, counties or large cities have undertaken all of the actions detailed below but several have launched significant initiatives that make them leaders in emergency power resilience and put them on a course to become role models for the rest of the nation.

Recommended actions to boost a jurisdiction's emergency power preparedness:

- Develop a comprehensive Emergency Power Threat Reporting and Response Protocol to include an Early Warning and Status Update Protocol supported by deployment of the P.I.O.N.E.E.R. Tool
- Creation of Emergency Power Asset Inventory of non-Federal Assets
- Develop an Emergency Power Asset Mutual Aid Protocol
- Identification of Emergency Power Assets at Critical Infrastructure Facilities
- Create an Emergency Power System Risk Calculation for individual critical infrastructure facilities
- Investment in quick connect devices to enable rapid connection of temporary emergency power assets to critical infrastructure facilities

- Stepped Up Coordination with Electric Utilities to develop enhanced communications and response protocols when emergency power is threatened at a critical infrastructure facility during an outage
- Creation of an Emergency Power Industry Working Group
- · Identification of emergency power gaps in fuel distribution facilities
- Align or modify state policies to support the use of alternative forms of emergency power to augment or replace diesel powered generators
- Develop reliable backup power options for at-risk citizens relying on electric-powered medical devices in their homes to help minimize safety risks during power outages

NOTE: Additional detail on these ten recommended actions a jurisdiction can take to significantly boost its emergency power preparedness can be incorporated into the proposed Energy Assurance and Emergency Power Preparedness Toolkit detailed in Action Step # 5.

Appendix

Details on Implementing FEMA's Temporary Emergency Power Task Force Action Plan	. AI
Details on Recommended Actions to Boost a Jurisdiction's Emergency Power Preparedness for inclusion in Proposed Toolkit	. A2
Key Architects of the Power Resilience Blueprint	. A6

Expected Deliverables in FEMA's Temporary Emergency Power Task Force Action Plan

- Create a national, secure inventory of public and private sector temporary and deployable emergency power assets and facilitate coordinated supply chain monitoring and management before, during and after a crisis
- Identify potential shortages of key parts and critical, long lead spare parts to enable pro-active stockpiling of critical assets and supplies
- Identify critical components in the fuel distribution system where the lack of emergency power or other obstacles could seriously impede the ability to keep emergency power refueled in disaster impacted areas. These include:
 - Refineries required to support the current "just in time" inventory management systems that characterize ultra-low sulfur diesel fuel and other emergency generator liquid fuels
 - Fuel depots and distribution facilities, including electricity- dependent IT systems for coordinating deliveries, pumping infrastructure, etc.
 - Trucking companies and the road infrastructure on which they rely (gasoline/diesel pumps, traffic lights and critical systems for traffic management)
 - Natural gas pipeline compressor stations that rely on electricity
- Develop a report detailing recommended deployments of emergency power or quick connect devices to ensure that critical components of the fuel distribution system can continue to function during a long term and widespread power outage. Report should include recommendations to spur enhanced public-private sector coordination and should detail suggested regulatory, legislative or code changes needed to effectuate recommendations.
- Plan and schedule periodic exercises to ensure the readiness of the public-private sector Temporary Emergency Power Task Force to achieve necessary level of coordination during a catastrophic disaster for both emergency power system equipment and fuel

Develop a comprehensive Emergency Power Threat Reporting and Response Protocol that *includes Early Warning and Status Updates* – Jurisdictions adopting such a protocol would provide much-needed clarity around how threats to emergency power at critical infrastructure facilities during power outages should be reported to government and utility officials. This protocol will also clarify how requests for deployment of temporary power and prioritized power restoration should be made by facilities and addressed by government and utilities. It is likely that emergency power threats at different types of facilities would need to be directed to different government officials, i.e., a water treatment plant threat vs a threat at a hospital. This reality makes it that much more important to create an early warning protocol that establishes clear communications protocols for different types of facilities. Deployment of the P.I.O.N.E.E.R. Tool to critical infrastructure facilities is an ideal means of achieving automated, real time notification of government officials and utilities when emergency power is threatened.

Creation of Emergency Power Asset Inventory of non-Federal Assets – In some jurisdictions, there are a significant number of deployable generators owned or rented by state, county or local governments that can be deployed to assist a critical facility during an outage. Some electric utilities also have access to rental generators than can be provided to local emergency management agencies for deployment when needed. Los Angeles County is an example of one such jurisdiction that has the benefit of significant local and county-owned generators as well as rental generators that Southern California Edison can sometimes make available during power outages. Creating an accurate inventory of these assets and developing protocols for facilities to follow when making a request for deployment of these resources are important steps in ensuring an efficient process of meeting needs for temporary power support.

Develop an Emergency Power Asset Mutual Aid Protocol – State, county and local Jurisdictions that own a significant number of emergency power assets available for deployment in a single geographic area should establish a mutual aid protocol to address how these temporary power assets can be more effectively deployed, either individually or collectively and under what circumstances.

Los Angeles County and the Cities of Los Angeles and Long Beach provide a good example on this front. Between 2013 and 2016, Los Angeles County government, in concert with the City of Los Angeles and the City of Long Beach, collectively purchased a sizeable number of deployable emergency generators with federal Urban Area Security Initiative (USASI) funds. Work is now underway to develop a mutual aid protocol that will determine when assets owned by these three jurisdictions will be deployed within and outside of their geographic boundaries.

Identification of Emergency Power Assets at Critical Infrastructure Facilities – One of the most important steps a jurisdiction can take to improve the efficiency of deploying temporary power assets is identifying the size, type and number of generators used by the jurisdiction's critical infrastructure facilities. This process will determine which temporary power assets are best suited for deployment to specific facilities. This is a critical step since a replacement generator needs to be as close in size to the generator being replaced as possible. Jurisdictions can work with trade associations representing different types of critical infrastructure to obtain this information.

Create an Emergency Power System Risk Calculation for individual critical infrastructure facilities – When a jurisdiction completes an inventory of emergency power systems at its critical infrastructure facilities, it will know which facilities rely on single generators for emergency power. It will also have information about the age of generators and other key components of an emergency power system. This information can be used to assign a risk rating to specific facilities. This risk rating will give a jurisdiction's emergency managers and public health officials a better sense of facilities with more vulnerable emergency power systems that would warrant closer scrutiny during an outage. The risk rating will also provide an indication that a facility may be more likely to require assistance during an extended outage.

Investment in quick connect devices to enable rapid connection of temporary emergency power assets to critical infrastructure facilities – A best practice recommended by the U.S. Army Corps of Engineers for jurisdictions seeking to bolster emergency power preparedness is to recommend that the critical infrastructure facilities in the jurisdiction invest in the installation of onsite quick connect devices, also known as manual transfer switches, that enable rapid installation of a temporary emergency power asset. This step significantly accelerates the process of connecting a temporary generator to a facility's electrical system, time savings that could make the difference between a medical facility having to evacuate or not. Any critical facility that does not have a permanent emergency power generator installed at its facility should take this action.

Registration of critical infrastructure facilities' emergency power systems in the Emergency Power Facility Assessment Tool (EPFAT) database - EPFAT is a secure, online tool developed by the U.S. Army Corps of Engineers to expedite the process of deploying a temporary federal generator to an impacted facility. Critical facilities are encouraged to use the EPFAT database to enter technical details about their emergency power system. When a facility's emergency power system is registered in the EPFAT database, the U.S. Army Corps of Engineers (USACE), which supports FEMA in the deployment of temporary emergency power assets, is able to accelerate deployment of generators to that facility since important details about the facility's emergency power system are already known.

If a facility requesting FEMA temporary power support is not in the EPFAT database, an assessment team from USACE must travel to the facility to inspect its emergency power system and determine the type and size generator needed as well as the amount of electrical cabling required to connect FEMA's trailer-mounted generator to the facility's electrical system. This process can add as much as a day to the overall deployment and installation timeframe. For facilities registered in the EPFAT database, USACE will be able to deploy the right generator assets directly to a facility without the need for an assessment team to undertake the time-consuming site inspection process. (A facility with a quick connect device that is also registered in the EPFAT database would represent a gold standard in emergency power preparedness.)

Stepped Up Coordination with Electric Utilities – In most jurisdictions, electric utilities work closely with emergency management agencies during blue sky days to foster enhanced coordination when disasters trigger power outages. An important element of this coordination that is often not addressed in sufficient detail is how utilities and emergency managers will communicate and coordinate when a critical infrastructure facility faces a serious threat to emergency power during an outage. This stepped up communication and coordination is critical since the potential for expedited power restoration for a stricken facility could alleviate concerns about a failing emergency power system. This enhanced coordination may also enable emergency managers to quickly determine that prioritized restoration is not possible for a facility, vital information that will inform decision making around temporary power deployment or potential evacuation of a critical healthcare facility.

Creation of an Emergency Power Industry Working Group – Jurisdictions should create a working group between emergency managers and the generator service, fuel and rental industry to facilitate stepped-up pre-disaster coordination that will enable closer collaboration during extended power outages, especially around deployment of temporary emergency power assets. This coordination will also facilitate faster response by government officials in addressing obstacles impeding the ability of service, fuel and rental providers to meet the needs of critical infrastructure clients, i.e., road closures, regulatory hurdles, etc.

Identification of emergency power gaps in fuel distribution facilities – The Power Resilience Blueprint Action Step # 3, expanding the focus of FEMA's Temporary Emergency Power Task Force, recommends assessing emergency power gaps in key parts of the nation's fuel distribution system. This action should be incorporated by states as part of any effort to boost emergency power preparedness. Among the lessons learned during Hurricane Sandy was that many of the fuel terminals in New Jersey had sufficient fuel but lacked the emergency power equipment needed to operate pumps to fill fuel trucks needed to sustain operation of generators and to refuel gas stations. Among the post-Sandy preparedness enhancements was the installation of generators at these critical fueling stations.

Create policies to support the use of alternative forms of emergency power to augment or replace diesel powered generators – Many jurisdictions have launched initiatives to reduce greenhouse gas emissions and promote renewable energy solutions. Alternative energy solutions can be used to replace or augment traditional, diesel-powered generators. States may undertake a review of existing policies to identify opportunities to more fully embrace alternative sources of emergency power while also assessing regulations that could be an impediment to these alternative solutions. Examples of alternative approaches to diesel-powered generators include fuel cell technology, battery storage systems fed by solar and wind power and combined heat power (CHP) systems that rely on natural gas.

Develop reliable backup power options for at-risk citizens relying on electric-powered medical devices in their homes to help minimize safety risks during power outages – The HHS emPOWER Program, a partnership between HHS/ASPR and the Centers for Medicare and Medicaid Services, has identified more than 2.5 million Medicare beneficiaries who live independently and rely on electricity-dependent durable medical and assistive equipment and devices. This number does not include those relying on the same types of devices who depend on Medicaid or private insurance.

Power outages can represent a life-threatening situation for these individuals, especially those who depend on ventilators, intravenous (IV) infusion pumps, suction pumps, oxygen concentrators and athome dialysis machines. An important component of the enhanced standards for emergency power preparedness envisioned in the Power Resilience Blueprint is development of reliable backup power options for these at-risk citizens. These options should include use of traditional and alternative sources of emergency power that could be provided in a person's home as well as battery recharging stations available in the community. Actions of the Blueprint are designed to align with and serve in support of the vital mission of the emPOWER program.

Key Architects of the Power Resilience Blueprint for America

The Power Resilience Blueprint was developed by a team of disaster preparedness leaders with specialized knowledge of energy assurance and emergency power preparedness planning and response. The principal architects of the Power Resilience Blueprint for America include:

Eric Cote, Founder and Project Director, Powered for Patients – Powered for Patients is a federally funded 501c3 non profit focused on promoting emergency power resilience for critical healthcare facilities. Cote has developed cutting edge solutions to addressing threats to emergency power by facilitating increased collaboration between government officials, critical healthcare facilities, utilities and the private sector generator service, fuel and rental industry. Cote also led the team that developed a powerful new situational awareness tool prototype under a contract with the Department of Homeland Security that provides real time, automated reports when emergency power is threatened during power outages. Cote is currently leading a Powered for Patients initiative in Los Angeles County to help the county and its hospitals better prepare for a large scale power outage. He is also advancing deployment of the P.I.O.N.E.E.R. tool to single-generator hospitals and skilled nursing facilities across the country. P.I.O.N.E.E.R. stands for Power Information Needed to Expedite Emergency Response. The P.I.O.N.E.E.R. tool provides the same type of real time emergency power threat reports enabled by the DHS-funded prototype but relies on a different technology process.

Brigadier General (Retired) John Heltzel, Director of Resilience Planning for the Electric Infrastructure Security Council (EISC) – General Heltzel helps lead EISC's EARTH EX exercise and the organization's Black Sky Exercises designed to help communities understand the scope of planning needed to properly prepare for catastrophic disasters such as a widespread and prolonged power outage. Before joining the EIS Council, General Heltzel served as Director of the Kentucky Division of Emergency Management, where he led the Commonwealth's response to 10 presidentially declared disasters, including the 2010 catastrophic statewide ice storm. In leading the response to this disaster, General Heltzel helped coordinate one of the largest deployments of temporary federal generators in FEMA history.

Chris Beck, Ph.D., Chief Scientist and Vice President for Policy for the Electric Infrastructure Security Council (EISC) – Dr. Beck is a technical and policy expert in several homeland security and national defense related areas based n critical infrastructure protection, cybersecurity, science and technology development, WMD prevention and protection, and emerging threat identification and mitigation. Before joining the EIS Council, Dr. Beck served as the Staff Director for U.S. House of Representatives Homeland Security Subcommittee on Cybersecurity, Infrastructure Protection and Science and Technology. He also served as the Senior Advisor for Science and Technology for the Homeland Security Committee.

Key Architects of the Power Resilience Blueprint for America

Paul Stockton, Ph.D., former Assistant Secretary of Defense for Homeland Defense and Americas Security Affairs, Managing Director of Sonecon, LLC. – Sonecon, LLC is an economic and security advisory firm in Washington, D.C. . During his tenure with the Department of Defense, Dr. Stockton led the DOD response to Hurricane Sandy, gaining valuable insight into the fuel supply system and its vulnerabilities to large scale disaster. Dr. Stockton serves as an advisor to both Powered for Patients and the EIS Council, where he serves as Editor in Chief of a series of Electric Grid Protection (E-PRO) Handbooks, published by the Electric Infrastructure Security Council on black sky hazards facing the U.S. electrical grid. Based on his work on the Handbooks, Dr. Stockton served as the lead author for Department of Homeland Security's Emergency Support Function (ESF)-14 "Cross-Sector Business and Infrastructure," which provides new opportunities to integrate emergency power initiatives into broader resilience efforts.

Peter Navesky, U.S. Army Corps of Engineers (Retired) – Mr. Navesky has deep expertise in temporary emergency power support developed over his 39 years career with the U.S. Army Corps of Engineers (USACE). During his last two decades of service with USACE, Mr. Navesky's primary focus was supporting USACE's temporary power mission. In this capacity, he provided overall leadership for the program and served as a liaison to FEMA's logistics division, which manages the federal temporary power program in close coordination with USACE. Mr. Navesky was actively involved in many deployments of federal temporary power assets, including those sent in response to the 2004 Hurricanes Charlie, Francis, Ivan and Jeanne in FL; 2005 Hurricanes Katrina and Rita in LA; 2008 Hurricanes Gustav and Ike in LA and TX; 2012 Hurricane Sandy in CT; and 2017 Hurricanes